Pilot-scale demonstration of a two-stage methanotrophic bioreactor for biodegradation of trichloroethylene in groundwater.
نویسندگان
چکیده
A two-stage methanotrophic bioreactor system was developed for remediation of water contaminated with TCE and other chlorinated, volatile, aliphatic hydrocarbons. The first stage of the reactor was a suspended-growth culture vessel using a bubbleless methane-transfer device. The second stage was a plug-flow bioreactor supplied with contaminated groundwater and cell suspension from the culture vessel. The test objectives were to determine the applicability of microbial culture conditions reported in the literature for continuous, pilot-scale TCE treatment; the technical feasibility of plug-flow bioreactor design for treatment of TCE; and the projected economic competitiveness of the technology considering the cost of methane for growth of methanotrophs. The methanotrophic organism used in the study was Methylosinus trichosporium OB3b. Information on system operation was obtained in bench tests prior to conducting the pilot tests. In bench- and pilot-scale tests, variability in the degree of TCE degradation and difficulty in maintaining the microbial culture activity led to short periods of satisfactory biotreatment. Further development of the microbial culture system will be required for long-term operation. During transient periods of high TCE degradation activity, the bioreactor concept proved feasible by exhibiting both a high degree of TCE biodegradation (typically about 90% at influent TCE concentrations of 0.5-4 ppm) and a close approximation to first-order reactor kinetics throughout the length of the reactor. Actual methane usage in the pilot-scale reactor resulted in projected methane costs of $0.33 per 1000 gallons of water treated. This cost theoretically would be reduced by system modifications. The theoretical minimum methane cost was approximately $0.05 per 1000 gallons.
منابع مشابه
Hydrocarbon contaminated water remediation using a locally constructed multi-stage bioreactor incorporated with media filtration
The present study investigated the coupling effect of biodegradation and media filtration in treating hydrocarbon contaminated water. The study recorded reductions in total petroleum hydrocarbon, total dissolved solids, turbidity and microbial load. The study was essentially a simulated pump and treat process that involved the pumping of hydrocarbon contaminated water for treatment in a locally...
متن کاملBiodegradation of low-molecular-weight halogenated hydrocarbons by methanotrophic bacteria.
Low-molecular-weight halogenated hydrocarbons are susceptible to degradation by anaerobic and aerobic bacteria. The methanotrophic bacterium Methylosinus trichosporium 0B3b degrades trichloroethylene more rapidly than other bacteria examined to date. Expression of soluble methane monooxygenase (MMO) is correlated with high rates of biodegradation. An analysis of 16 S rRNA sequences of 11 riboso...
متن کاملBiodegradation of chlorinated aliphatic hydrocarbon mixtures in a single-pass packed-bed reactor.
Aliphatic chlorinated compounds, such as trichloroethylene (TCE) and tetrachloroethylene (PCE), are major contaminants of ground water. A single-pass packed-bed bioreactor was utilized to study the biodegradation of organic waste mixtures consisting of PCE, TCE, and other short-chain chlorinated organics. The bioreactor consisted of two 1960-mL glass columns joined in a series. One column was p...
متن کاملCharacterization of a methane-utilizing bacterium from a bacterial consortium that rapidly degrades trichloroethylene and chloroform.
A mixed culture of bacteria grown in a bioreactor with methane as a carbon and energy source rapidly oxidized trichloroethylene and chloroform. The most abundant organism was a crescent-shaped bacterium that bound the fluorescent oligonucleotide signature probes that specifically hybridize to serine pathway methylotrophs. The 5S rRNA from this bacterium was found to be 93.5% homologous to the M...
متن کاملStudy on Operational Conditions to Minimize Membrane Fouling in Membrane Bioreactor (MBR) System for Wastewater Treatment-Preliminary Pilot Tests
In this study, effect of antiscalant usage on minimizing of membrane fouling due to high water hardness during wastewater treatment tests run by a pilot-scale membrane bioreactor (MBR) system. The membranes used in these studies were Kubota flat sheet MBR membranes made from polyethylene with a pore size of 0.4 micrometer. Preliminary tests were carried out with tap water...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Air & Waste Management Association
دوره 45 1 شماره
صفحات -
تاریخ انتشار 1995